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outline

• the particle physics of neutrino cross sections

- precision hadron physics and elementary targets

- radiative corrections

- lattice QCD

• interplay with nuclear modeling

• interplay with detector technology

• connections with other processes and new physics 
searches
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some new results

• new results from an analysis of neutrino-deuteron 
scattering 

- nucleon axial radius very different from 
conventional wisdom 

- model independent (z expansion) form 
factor extracted: coefficients, errors, correlations

• all of this built into GENIE: readily integrated with 
nuclear corrections and errors propagated to neutrino 
parameters

• further improvement expected from lattice QCD

M. Betancourt, R. Gran,  RJH, A. Meyer (to appear)
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Have established a new physics scale

1

⇤
HHEE ⇤ ⇠ v2weak

m⌫
⇠ 1014 GeV

Exploring this new physics takes us outside of the 
HEP comfort zone.  That’s ok. 

Neutrino physics is living the dream.
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ν’s compared to high energy colliders

BSM, SUSY, …

pQCD, quarks, gluons

PDFs and hadrons

neutrino models

nucleon level & 
rad.corr. 

nuclear modeling

ν collider

new physics probes require understanding the SM in an 
increasingly diverse range of processes

New 
Physics

SM SM
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- neutrino oscillations
- supernova constraints 
- nucleon decay 
- WIMP searches
- axion searches
- μ2e conversion 
- EDMs 
- 0νββ 
- ... 

geologyatomic 
physics

hydrodynamics

astrophysics

lattice gauge
theory

effective 
field theory

cosmology

nuclear 
structure

perturbative, 
renormalizable 

QFT

a critical and exciting time, opportunities demanding 
adaption of existing tools and development of new tools

cosmic 
ray physics …

ToolsPhysics



86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
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included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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Need precise 
cross sections

Need precise 
energy 

reconstruction

Many related activities and applications, over a wide energy range: 
- sterile neutrino searches
- reactor, supernova, astrophysical, solar, cosmological ν’s
- proton decay, …

Focus here on ~GeV ν cross sections for oscillation experiments
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ν

Perturbative QFT

Nuclear physics

Lattice QCD

Event generation and 
detector modeling

Precision hadron
physics

adapting existing tools, 
and  

developing new tools

This is a challenging problem.  HEP Theory is…  
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ν

Perturbative QFT

Nuclear physics

Lattice QCD

Event generation and 
detector simulation

Precision hadron
physics

Connecting with  
other communities 

This is a challenging problem.  HEP Theory is…  
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Consider some very basic properties of nucleons 

- scattering by the basic WIMP 

- scattering by electrons (or muons)

- scattering by neutrinos

Directly relevant to neutrino cross section program

Surprising, recent and important results in each case
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Neutrino physics benefits from interplay with other 
fields

- the tools developed for neutrino cross 
sections have wide applicability

- application to other processes acts both as 
validation, and probes separately motivated 
fundamental physics

- QCD and nucleon/nuclear structure key to 
understanding neutrinos, DM, proton radius 
puzzle, … 
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- nuclear scattering by the basic WIMP 

basic WIMP = electroweak triplet (color, hyper charge 
neutral)
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- nuclear scattering by the basic WIMP 

target nucleus

basic WIMP = electroweak triplet (color, hyper charge 
neutral)
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- nuclear scattering by the basic WIMP 

target nucleus

χ

basic WIMP = electroweak triplet (color, hyper charge 
neutral)
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- nuclear scattering by the basic WIMP 

Higgs, W, Z bosons

target nucleus

χ

basic WIMP = electroweak triplet (color, hyper charge 
neutral)
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- nuclear scattering by the basic WIMP 

basic WIMP = electroweak triplet (color, hyper charge 
neutral)
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert

doublet

triplet
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�
S
I
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

mHiggs(GeV)

�
sp

in
.i
n
d
ep

.

RJH, M.P. Solon (2014)

definite prediction of Standard model, but 

Model independent prediction for heavy WIMP scattering 

- QCD uncertainty, both perturbative and nonperturbative

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):

c(0)
2 (µt) = C�s(µt)

4⇤

�
1

3x2
h

+
3 + 4xt + 2x2

t

6(1 + xt)2

⇥
,

c(2)
2 (µt) = C�s(µt)

4⇤

�
� 32

9
log

µt

mW
� 4� 4(2 + 3xt)

9(1 + xt)3
log

µt

mW (1 + xt)

� 4(12x5
t � 36x4

t + 36x3
t � 12x2

t + 3xt � 2)

9(xt � 1)3
log

xt

1 + xt
� 8xt(�3 + 7x2

t )

9(x2
t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7

Heavy WIMP EFT
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2

(pure states), the above lagrangian is completely
specified by electroweak quantum numbers since
gauge-invariance implies f(H) = 0, and �m can be
chosen to vanish for degenerate heavy-particle states.
In particular, the first term in (1) does not depend
on the WIMP mass, spin or other properties beyond
the choice of gauge quantum numbers. Model de-
pendence is systematically encoded in operator co-
e�cients representing 1/M corrections. For exten-
sions with two electroweak multiplets (mixed states),
f(H) and �m are non-vanishing and depend on �,
the mass splitting of the multiplets, and , their cou-
pling strength mediated by the Higgs field.

Weak-scale matching. Interactions of the lightest,
electrically neutral, self-conjugate WIMP, �v, with
quarks and gluons, relevant for spin-independent (SI),
low-velocity scattering with a nucleon, are given at
energies E ⌧ mW by the EFT

L�v,SM =
�̄v�v

m3
W

X

S

X

q

c(S)
q O(S)

q +c(S)
g O(S)

g

�
+. . . ,

(2)

where q = u, d, s, c, b is an active quark flavor and
we have chosen QCD quark and gluon operators of

definite spin, S = 0, 2: O(0)
q = mq q̄q, O

(0)
g = (GA

µ⌫)
2,

O(2)µ⌫
q = 1

2 q̄
⇣
�{µiD⌫}

� � gµ⌫iD/ �/4
⌘
q, and O(2)µ⌫

g =

�GAµ�GA⌫
� + gµ⌫(GA

↵�)
2/4. Here Dµ

� ⌘
�!
Dµ � �Dµ,

and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes sym-
metrization. The ellipsis in Eq. 2 denotes higher-
dimension operators suppressed by powers of 1/mW .

We match EFTs (1) and (2) at reference scale
µt ⇠ mW ⇠ mt by integrating out weak scale par-
ticles W±, Z0, h0 and t. In the heavy WIMP limit,
matching coe�cients, ci, of (2) may be expanded as

ci = ci,0 + ci,1
mW

M
+ . . . . (3)

We compute the complete set of twelve matching co-
e�cients ci,0 at leading order in perturbation theory.

Weak-scale matching for mixed states requires
renormalization of the Higgs-WIMP vertex for a con-
sistent evaluation of loop-level amplitudes, and a gen-
eralized basis of heavy-particle loop integrals to ac-
count for non-vanishing residual masses. Details of
the matching computation can be found in [4].

QCD analysis. Having encoded physics of the
heavy WIMP sector in matching coe�cients of (2),
the remaining analysis is independent of the M �
mW assumption, and consists of renormalization
group (RG) running to a low scale µ0 < mc, matching

N
LO

N
N
LO

NN
NL
O

LO
90 100 110 120 130 14010-50

10-49

10-48

10-47

mh (GeV)

�
S
I
(c
m

2
)

FIG. 1: SI cross section for low-velocity scattering on
the proton as a function of mh, for the pure-triplet case.
Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the RG running from µc to µ0 and in the
spin-0 gluon matrix element. Bands represent 1� uncer-
tainty from neglected higher order pQCD corrections.

at heavy quark thresholds, and evaluating hadronic
matrix elements. This module is systematically im-
provable in subleading corrections and is applicable
to generic direct detection calculations. An extension
of the operator basis would allow robust connections
between contact interactions constrained at colliders
and low-energy observables of direct detection [7].
RG evolution accounts for perturbative corrections
involving large logarithms, e.g., ↵s(µ0) logmt/µ0.
Fig. 1 illustrates the impact of higher order pQCD
corrections. We collect in Refs. [3, 5] the details
of mapping high-scale matching coe�cients onto the
low-energy theory where hadronic matrix elements
are evaluated [24]. Cross sections for scattering on
the neutron and proton are numerically similar; we
present results for the latter.

Pure-state cross sections. Consider the situation
where the SM is extended by a single electroweak
multiplet. For definiteness let us take the cases of
a Majorana SU(2)W triplet of Y = 0, and a Dirac
SU(2)W doublet of Y = 1

2 . For the doublet we
assume that higher-dimension operators cause the
mass eigenstates after electroweak symmetry break-
ing (EWSB) to be self-conjugate combinations D1

andD2, thus forbidding a tree-level �̄v�vZ0 coupling,
and moreover that inelastic scattering is suppressed.

Upon performing weak-scale matching [4] and map-
ping to a low-energy theory for evaluation of matrix
elements [5], we obtain parameter-free cross section
predictions as illustrated in Fig. 2. The triplet cross
section is

�T
SI = 1.3+1.2

�0.5
+0.4
�0.3 ⇥ 10�47 cm2, (4)

where the first (second) error represents 1� uncer-

perturbative QCD is important:

NLO corrections essential for correct order of 
magnitude

QCD aspects of WIMP-nucleus scattering
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QCD aspects of WIMP-nucleus scattering
nucleon-level amplitudes are important (important 
impact from lattice QCD)

SpNlat, Sslat

SpN, S0
100 120 140 160 180 200

10-49

10-48

10-47

10-46

mhHGeVL

s
Hcm

2 L

Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-
grangian (4) through 1/M3, we demonstrated matching conditions for subleading operators in
a simple model. Using the e↵ective theory, we demonstrated universality of the mass splitting

12

lattice QCD inputs

baryon spectroscopy
inputs 

Pavan et al.
hep-ph/0111066

Borasoy and Meissner, 
hep-ph/9607432

Durr et al. 1109.4265
Junnarkar and Walker-Loud, 1301.1114

nuclear effects may also play a role (amplitude 
cancellation at one-nucleon level)
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QCD aspects of WIMP-nucleus scattering

lessons for neutrino cross sections

- important interplay of perturbative QFT, nucleon-
level amplitudes and nuclear effects

- important inputs from lattice QCD

- all parts relevant for determining observability of 
WIMPs, and interpretation of next generation 
experiments
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- elastic electron-proton scattering
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- elastic electron-proton scattering

p



19

- elastic electron-proton scattering

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.

11

photon

e

p
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- elastic electron-proton scattering
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TherenormalizationconstantZ
�
2

isinheritedfrom
theelectroweaksymmetricLagrangian(2)and

Z
W
1

,Z
W
2

arefieldandcouplingrenormalizationfactorsfortheSU(2)gaugefield[77].
6

Letusbrieflyreview
therenormalizationforthescalartriplet.The1PItwopointfunctionsfor
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Do we understand this problem with controllable uncertainties? 

complex nucleus:
40Ar, 12C, 16O, …

isolated proton at rest

nucleus p

- inputs to neutrino cross sections (vector form factors)
- a proving ground for both theory and experiment

nontrivial flux of
neutrinos monoenergetic flux 

of electrons
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy
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Some facts about the Rydberg constant puzzle (a.k.a. 
proton radius puzzle) 

1) It has generated a lot of 
attention and controversy

2) The most mundane resolution necessitates:
• 5σ shift in fundamental Rydberg constant
• discarding or revising decades of results in 
e-p scattering and hydrogen spectroscopy

3) Systematic effects in electron-proton 
scattering impact neutrino-nucleus scattering, 
at a level large compared to DUNE precision 
requirements

This is HEP’s problem:
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experimental landscape: electron-proton scattering
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- nucleon scattering by the neutrino

First step in a program for error bars on neutrino-nucleus 
cross sections: the most elementary process.
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First step in a program for error bars on neutrino-nucleus 
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- nucleon scattering by the neutrino

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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First step in a program for error bars on neutrino-nucleus 
cross sections: the most elementary process.
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Start with the basic process

What is the status of nucleon-level amplitudes, the basic building block 
for neutrino-nucleus cross sections?

n p

μ-νμ

poorly known axial-vector form factor

�(⌫n ! µp) = | · · ·FA(q
2) · · · |2

A common ansatz for FA has been employed for the last ~40 years: 

5

C. Dipole fits

Our results for the axial form factor will di↵er from
the analyses in the original publications. These di↵er-
ences arise from a number of sources: di↵erent numerical
inputs in Table I; di↵erences in the statistical analysis
(such as fits to the binned Q2 distribution using the flux
representation (5) in place of unbinned likelihood fits);
and di↵erences in axial form factor shape assumptions.
In order to understand these di↵erences, we begin by re-
stricting attention to the dipole ansatz,

F dipole

A (q2) = FA(0)

✓
1� q2

m2

A

◆
�2

, (12)

and compare to fits in the orginal publications.8

Table II gives results for fits to the dipole ansatz
(12) for the axial form factor. The table shows “flux-
independent” results from the original experiments,
which performed unbinned likelihood fits to event-level
data. Our results represent a likelihood fit to the binned
Q2 distribution of events obtained with a neutrino flux
given by smoothing the binned reconstructed neutrino
energy distribution (divided by theoretical cross section),
as described in Sec. II B. Fits to the binned log-likelihood
function are found by minimizing the function

�2log (L (µ(FA))) = 2
X

i


µi � ni + nilog

✓
ni

µi

◆�
,

(13)
where ni is the number of events in each bin and µi is
the theory prediction (10) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.9

Because of the di↵erence in fit techniques, we do not
expect precise agreement even when the original choices
of constants in Table I are used. However, discrepancies
in central values for each case are below the 1� level, and
the size of the errors are approximately equal. Having
reproduced the original analyses to the extent possible,
and having updated constants as in Table I, we turn to
an investigation of axial form factor shape assumptions.

III. z EXPANSION ANALYSIS

Having fixed the datasets and analysis procedure, let
us investigate the implications of form factor shape as-
sumptions.

8 A similar exercise was performed in Refs. [3, 4, 29].
9 Errors determined by a covariance matrix analysis are in good
agreement; an explicit comparison of the two error determina-
tions is given in Sec. VI.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges and
choices of t

0

.

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

A. z expansion formalism

Let us recall that the axial form factor obeys the dis-
persion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (14)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [62],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (15)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (16)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.
In any given experiment, the finite range of Q2 implies

a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (17)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2. and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (18)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III

rA = 0.674(9) fm

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

Typically quoted uncertainties are small (e.g. compared to proton charge 
form factor)

Inconsistent with QCD. 
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n p

μ-νμ

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

- small statistics, ~3000 events in world data

- small(-ish) nuclear effects

- small(-ish) experimental uncertainties 
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tion, the following assumptions are made: (1) time-
reversal invariance and charge symmetry, (2) partially con-
served axial-vector current (PCAC} for the small pseudo-
scalar term, and (3) isotriplet-conserved-vector-current
(CVC) hypothesis.
The first assumption, which requires all form factors to

be real, yields Eq——F~——0, leading to the absence of second
class currents. With the second assumption, Fp(Q ) is
given by

20-

Fp(Q )=2M Fg(Q~)/(Q +m ),
where

'0 2
Q' (Gev')

FICx. S. The Q distribution for the selected quasielastic
events. The solid curve represents the differential cross section
of quasielastic scattering for the neutron in deuteron.

Q'= (P —P„)'—(E„—E„)' .
The contribution to the cross section from this term in the
energy region E„&5 GeV is less than 0.1%, and conse-
quently this term is neglected. The third assumption re-
lates Fz and Fz to the isovector Sachs electric and mag-
netic form factor, Gz and G~ determined from electron-
scattering experiments as follows:

near /=0 . The shaded area corresponds to the addition-
al events found from the rescan. Using the average of the
events with P between —90 and 126 (dashed line), we
calculated the event bias to be S%%uo. This does not neces-
sarily represent the true loss of events because of the
three-point plot per event. We examined the true event
loss from the event bias in Fig. 4 by using a Monte Carlo
simulation. This event loss amounts to 8% and is not
recovered by rescanning (shaded area). Hence, a correc-
tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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p p
deuteron

Deuterium bubble chamber data Fermilab 15-foot deuterium bubble 
chamber, PRD 28, 436 (1983)

- small statistics, ~3000 events in world data

- small(-ish) nuclear effects

- small(-ish) experimental uncertainties 

28 HIGH-ENERGY QUASIELASTIC v„n ~@ p SCATTERING IN. . . 439

80

60
Ot

P co.

h4, =1.05 GeV

tion, the following assumptions are made: (1) time-
reversal invariance and charge symmetry, (2) partially con-
served axial-vector current (PCAC} for the small pseudo-
scalar term, and (3) isotriplet-conserved-vector-current
(CVC) hypothesis.
The first assumption, which requires all form factors to

be real, yields Eq——F~——0, leading to the absence of second
class currents. With the second assumption, Fp(Q ) is
given by

20-

Fp(Q )=2M Fg(Q~)/(Q +m ),
where

'0 2
Q' (Gev')

FICx. S. The Q distribution for the selected quasielastic
events. The solid curve represents the differential cross section
of quasielastic scattering for the neutron in deuteron.

Q'= (P —P„)'—(E„—E„)' .
The contribution to the cross section from this term in the
energy region E„&5 GeV is less than 0.1%, and conse-
quently this term is neglected. The third assumption re-
lates Fz and Fz to the isovector Sachs electric and mag-
netic form factor, Gz and G~ determined from electron-
scattering experiments as follows:

near /=0 . The shaded area corresponds to the addition-
al events found from the rescan. Using the average of the
events with P between —90 and 126 (dashed line), we
calculated the event bias to be S%%uo. This does not neces-
sarily represent the true loss of events because of the
three-point plot per event. We examined the true event
loss from the event bias in Fig. 4 by using a Monte Carlo
simulation. This event loss amounts to 8% and is not
recovered by rescanning (shaded area). Hence, a correc-
tion of 1.08+0.05 has been made to the data independent
of scanning efficiency.
Figure 5 shows the Q distribution for the quasielastic

events. The curve in Fig. 5 is the best fit obtained by us-
ing the prediction of the differential cross section for reac-
tion (2) with M~ ——1.05 GeV which was obtained from
this experiment (see Sec. III). The X value from this ftt
was found to be 15 for 20 data points for Q between 0.1
and 3 GeV . Comparing the observed Q distribution to
the fitted curve, the correction factor for Q &0.1 GeV2 is
estimated to be 1.10+0.02. The overall correction factor
including scanning-measuring efficiency is 1.34+0.07.
We note that this correction factor influences the value of
the neutrino flux but not the Mz value, because we use a
flux-independent method to determine Mq.

III. MEASUREMENT OF THE FORM FACTOR

2 2
Fy(Q') = G~(Q')+ — G (Q') 1+

4M 4M

2
' —1

Ff(Q )=[6M(Q )—GE(Q )]g ' 1+
4M

2
' —2

GE(Q }=6M(Q }(1+/) =A(Q ) 1+
My

where M~ is the vector mass, Mv ——0.84 GeV, g is the
difference between the proton and neutron anomalous
magnetic moment,

g'=}Mp—p„=3.708,
and A, (Q ) (Ref. 1S) is the correction factor for the small
deviation of the electron-scattering data from a pure di-
pole form factor. We further assume the axial-vector
form factor in a dipole form,

+g(Q )=+g(0)/(I+Q /Mg )

where the value of F~(0)=—1.23+0.01 is taken from P-
decay experiments. '
From these assumptions, the differential cross section

for the quasielastic reaction can be expressed in terms of
only one parameter, Mz, as

In the context of the V—A theory, the matrix element
for the quasielastic reaction, v&n ~p p, can be written as
a product of the hadronic weak current and the leptonic
current. ' The general form of the hadronic weak current
is written in terms of six complex form factors which are
functions of Q and characterize the nucleon structure.
These are Fs (induced scalar), Fp (induced pseudoscalar),
F~ (isovector Dirac), Ff (isovector Pauli), F~ (axial vec-
tor}, and Fr (induced tensor). The quasielastic cross sec-
tion can be expressed in terms of these six form factors.
In order to simplify the analysis of the quasielastic reac-

GMcos8c 2 2 (s u)&( ')+&( )
dQ 8rrE„M

1

C(Q2) (s
—u) (7)

where s —u =4ME„Q m&, and M =(M„+—Mp)—/2.
The values of the Fermi constant and of the Cabibbo angle
are taken to be G =1.166 32& 10 GeV and
cos8c——0.9737, respectively (see Ref. 16). The structure

Best source of almost-free neutrons: deuterium

ANL 12-foot deuterium bubble 
chamber, PRD 26, 537 (1982)

BNL 7-foot deuterium bubble 
chamber, PRD23, 2499 (1981)

also:
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HEP toolbox is being applied to precision lepton-nucleon scattering

Basic problem: don’t know form factor shapes, so don’t know what 
we’re constraining

coefficients in rapidly 
convergent expansion encode 
nonperturbative QCD

tcut

F (q2) =
X

k

ak[z(q
2)]k

Systematically improvable, quantifiable uncertainties

experimental 
kinematic region

Underlying QCD tells us that Taylor expansion in appropriate 
variable is rapidly convergent

q2

particle thresholds

z
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This approach has been very successful in other processes

E.g., B→πeν:  |z|<0.28 dB
dq2

⇠ |Vub|2|F+(q
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Figure 6: The B → π form factor F+ plotted in terms of the q2 variable (left) and z variable
(right). Data are from [60]. Plots are reproduced from [61].
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Figure 7: The proton form factor GE plotted in terms of the Q2 variable (left) and the z
variable (right). Data are from [62]. Plots are reproduced from [43].

• Comparison to the complete range of hydrogen and muonic hydrogen observables.

• Possible extension to parity-violating atomic observables. The effective theory analysis
systematizes “Coulomb subtractions” that may appear ad hoc in more phenomenological
treatments [72].

2.2.4 Precision measurements: impact and relation to previous work

The PI’s research has contributed to the improved determination of several fundamental
parameters. These include:

• rp
E, the mean-square charge radius of the proton, using isospin decomposition and analyt-

icity of electron-nucleon scattering amplitudes [43].
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• Comparison to the complete range of hydrogen and muonic hydrogen observables.

• Possible extension to parity-violating atomic observables. The effective theory analysis
systematizes “Coulomb subtractions” that may appear ad hoc in more phenomenological
treatments [72].

2.2.4 Precision measurements: impact and relation to previous work

The PI’s research has contributed to the improved determination of several fundamental
parameters. These include:

• rp
E, the mean-square charge radius of the proton, using isospin decomposition and analyt-

icity of electron-nucleon scattering amplitudes [43].
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+

Becher, RJH hep-ph/0509090

simple shape in z

(Similarly K→πeν: |z|<0.047)
RJH hep-ph/0607108, KTeV hep-ex/0608058
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Figure 27. Left: comparison of vector form factor f
+

(z) from z expansion fits to: only the lattice-

QCD data (cyan band) and only experimental data including all four measurements (gold band).

Right: the similar plot for the partial branching fraction dB/dq2. The fits including lattice results

use Nz = 4, while the experiment-only fit uses Nz = 3. The experimental data points and the

experiment-only z-fit result in the left plot have been converted from
�
�B/�q2

�
1/2 to f

+

using

|Vub| from the combined fit. The lattice-only fit result(cyan band) and the combined-fit result (red

band) in the right plot is converted from the form factor with the same |Vub|.

VI. RESULTS AND CONCLUSION

Our final result for |Vub|, obtained from our preferred z fit combining our lattice-QCD cal-

culation of the B ! ⇡`⌫ form factor with experimental measurements of the corresponding

decay rate, is

|Vub| = (3.72± 0.16)⇥ 10�3. (6.1)

The error includes all experimental and lattice-QCD uncertainties. The contribution from

lattice QCD to the total error is now comparable to that from experiment. The error reported

here, following HFAG [6], does not apply the PDG prescription for discrepant data; that

prescription [65] would scale the error by a factor of
p

�2/dof = 1.2. As can be seen from

Table XVII and Fig. 26, the low fit quality is due to the tension between the BaBar11 data

set and the others. An inspection of all the experimental data in Fig. 27 shows that the

point near z = �0.1 in the BaBar11 data set is lower than the others and a bit more precise

than one might have anticipated, but does not suggest that this or any of the data sets have

any systematic problems.
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Adapt these tools for neutrino - hadron scattering 

n p

μ-νμ νμ + n→μ- + p,   
0 < Q2 < 3 GeV2 

|z|<0.35

Will give an overview and main results of this analysis

Ab initio flux estimates have poorly constrained systematics. 
• Use published distributions in neutrino energy to 
determine flux self-consistently:

3

TABLE I. Inputs from the original publications, BNL1981 [60], ANL1982 [66] and FNAL1983 [68], and our default inputs. See
text for details.

input BNL1981 ANL1982 FNAL1983 this work reference

gA -1.23 -1.23 -1.23(1) -1.2723(23) [46]

µp � µn � 1 3.708 3.71 3.708 3.7058 [46]

FV i Olsson [56] Olsson [56] Olsson [56] BBA2005 [41]

FP PCAC PCAC PCAC PCAC (1)

Deuteron correction Singh [57] Singh [57] Singh [57] Singh [57]

lepton mass mµ = mµ except ABC mµ = mµ mµ = mµ except ABC mµ = mµ

Q2 range 0� 3GeV2 0� 2.5GeV2 0� 3GeV2

N
bins

50 50 30

N
events

1236 1792 354

kinematic cut Q2 � 0.06GeV2 Q2 � 0.05GeV2 Q2 � 0.10GeV2

trino studies [41]. Similar results were obtained using the
BBBA 2007 [2] parameterization.3

For FP , we employ the ansatz,

FPCAC

P (q2) =
2m2

NFA(q2)

m2

⇡ � q2
. (1)

Nuclear corrections relating the free neutron cross sec-
tion, d�n to the deuteron cross section d�D may be pa-
rameterized as

d�D

dQ2

= R(Q2, E⌫)
d�n

dQ2

, (2)

where d�D/dQ2 denotes the deuteron cross section dif-
ferential in the variable Q2

QE

defined by the quasielastic
assumption (scattering on a free neutron at rest),

Q2

QE

= �m2

µ +
(2mNEµ �m2

µ)(Eµ � pµ cos ✓µ)

mN � Eµ + pµ cos ✓µ
. (3)

The model of Ref. [57] was used in the original analyses,
with R(Q2, E⌫) ⇡ R(Q2) independent of neutrino energy,
and R(Q2) ! 1 above Q2 ⇡ 0.2GeV2. We retain this
description as default but examine deviations from this
simple model below in Sec. IV.

The neutrino-neutron quasielastic cross section may be
written in a standard form,

d�n

dQ2

/ 1

E2

⌫

⇥
A(Q2) +B(Q2)W + C(Q2)W 2

⇤
, (4)

where Q2 = �q2 is the invariant momentum transfer,
E⌫ is the incoming neutrino energy, W = E⌫/mN �
Q2/(4m2

N )�m2

µ/(4m
2

N ), and A, B and C are quadratic
functions of nucleon form factors [40]. In the BNL1981

3 A systematic study of the vector form factors similar to the z
expansion analysis of the axial form factor presented here is un-
dertaken in Refs. [44, 45].

and FNAL1983 datasets, the lepton mass was neglected
inside the functions A(Q2), B(Q2) and C(Q2) of Eq. (4),
but retained in other kinematic prefactors. In our default
fits, we retain the complete lepton mass dependence.
Table I also gives the Q2 range and bin size, the total

number of events, and the minimum Q2 retained in the
analysis (in each case, the lowest-Q2 bin was omitted).
We retain the same binning and minimum Q2 cut in our
default fits. The event distributions in Q2 have been
obtained by digitizing the relevant plots from the original
publications. [rjh: These digitizations are reproduced
as supplementary material to the present paper.]

B. E⌫ distributions and flux

An advantage of the approximately quasielastic pro-
cess (neutrino scattering on isolated neutron at rest) is
that the neutrino energy may be accurately reconstructed
for each event, allowing determination of cross section pa-
rameters while avoiding poorly-controlled uncertainties
in ab initio neutrino flux estimates.
Unfortunately, event-level information for the deu-

terium datasets is no longer available, so that, e.g., it
is not possible to perform an unbinned likelihood fit us-
ing the E⌫ and Q2 dependence of the cross section, as in
the original publications. However, the one-dimensional
distribution of events in reconstructed neutrino energy,
dN/dE⌫ , may be extracted from the original publica-
tions, and we may use this information to reconstruct
the flux self-consistently,

�(E⌫)dE⌫ =
1

�(E⌫ , FA)

dN

dE⌫
dE⌫ , (5)

where �n(E⌫ , FA) is the quasielastic cross section. 4

4 In practice, fits are performed with Eq. (5) by first implementing
a fixed trial ansatz for FA(q2) to compute the cross section ap-
pearing in the denominator; The fits are then iterated with the
thus-determined FA(q2) until convergence is reached.

• Fit to published Q2 distributions to determine FA

Event-level data from the deuterium experiments has been lost

M. Betancourt, R. Gran, RJH, A. Meyer (to appear)

Reproduced results of original publications under same assumptions

Replaced dipole FA with model-independent z expansion (and updated 
other parameter values) 
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6

shows that the form factor expressed as FA(z) becomes
approximately linear. Taking |z|

max

= 0.23 implies that
quadratic, cubic, and higher order terms enter at the level
of ⇠ 5%, 1%, 0.3%, etc. We investigate a range of k

max

in Eq.(16), and other choices of t
0

.
The asymptotic scaling prediction from perturbative

QCD [69], FA ⇠ Q�4, implies the series of four sum
rules [44]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(19)

We enforce the sum rules (19) on the coe�cients, ensur-
ing that the form factor falls smoothly to zero at large
Q2.

From (19), it can be shown [44] that the coe�cients
behave as ak ⇠ k�4 at large k. We remark that the dipole
ansatz (12) implies the coe�cient scaling law |ak| ⇠ k at
large k,10 in conflict with the scaling law |ak| ⇠ k�4 from
perturbative QCD.

B. Coe�cient bounds

An examination of explicit spectral functions and scat-
tering data motivates the bound of [62]

|ak/a0|  5. (20)

As noted above, from (19), the coe�cients behave as ak ⇠
k�4 at large k. We invoke a fall-o↵ of the coe�cients at
higher order in k,

|ak/a0|  25/k , k > 5. (21)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We also investigate alterna-
tives to Eqs. (20) and (21).

C. z expansion fits

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as in
Eq. (16). We enforce the sum rule constraints (19) and
use the default statistical priors (20),(21). The results
are summarized in Table IV and displayed in Figs. 1 and
2.

As discussed after Eq. (18), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to the numerical size of |z|

max

in Table III. This is

10 This result follows from an analysis similar to the representation
of a monopole by z expansion, cf. Ref. [19].
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

borne out by the data, which determines a form factor
that is approximately linear in the z variable. For the
Na = 4 fits in Table IV,
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shows that the form factor expressed as FA(z) becomes
approximately linear. Taking |z|

max

= 0.23 implies that
quadratic, cubic, and higher order terms enter at the level
of ⇠ 5%, 1%, 0.3%, etc. We investigate a range of k

max

in Eq.(16), and other choices of t
0

.
The asymptotic scaling prediction from perturbative

QCD [69], FA ⇠ Q�4, implies the series of four sum
rules [44]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(19)

We enforce the sum rules (19) on the coe�cients, ensur-
ing that the form factor falls smoothly to zero at large
Q2.

From (19), it can be shown [44] that the coe�cients
behave as ak ⇠ k�4 at large k. We remark that the dipole
ansatz (12) implies the coe�cient scaling law |ak| ⇠ k at
large k,10 in conflict with the scaling law |ak| ⇠ k�4 from
perturbative QCD.

B. Coe�cient bounds

An examination of explicit spectral functions and scat-
tering data motivates the bound of [62]

|ak/a0|  5. (20)

As noted above, from (19), the coe�cients behave as ak ⇠
k�4 at large k. We invoke a fall-o↵ of the coe�cients at
higher order in k,

|ak/a0|  25/k , k > 5. (21)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We also investigate alterna-
tives to Eqs. (20) and (21).

C. z expansion fits

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as in
Eq. (16). We enforce the sum rule constraints (19) and
use the default statistical priors (20),(21). The results
are summarized in Table IV and displayed in Figs. 1 and
2.

As discussed after Eq. (18), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to the numerical size of |z|

max

in Table III. This is

10 This result follows from an analysis similar to the representation
of a monopole by z expansion, cf. Ref. [19].
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

borne out by the data, which determines a form factor
that is approximately linear in the z variable. For the
Na = 4 fits in Table IV,
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Binned log likelihood fit to z-expansion FA(q2)
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FIG. 2. Best fit curves and errors propagated from deuterium
to free-neutron cross section. Blue corresponds to dipole and
red to Na = 4 z expansion in Table IV.
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Results are consistent within errors. The very conserva-
tive bound |ak/a0|  10 would lead to an error that is
⇠ 50% larger than our default |ak/a0|  5.

3. Choice of t
0

Finally, consider the choice of t
0

.11 A di↵erent choice
of t

0

requires more parameters to achieve the same trun-
cation error, ⇠ |z|Na+1. We compare the default case of
t
0

= �0.28GeV2 and Na = 4 to the case of t
0

= 0 and
Na = 7,12 finding

[ā
1

(BNL), ā
1

(ANL), ā
1

(FNAL)]

=

(
[2.23(10), 2.24(10), 2.02(15)] (Na = 4, t

0

= t̄
0

)

[2.20(9), 2.20(10), 2.01(17)] (Na = 7, t
0

= 0)
,

(27)

11 For t
0

= toptimal

0

(1GeV2) = �0.28GeV2, by design, the shape
parameter is identified with the linear coe�cent of the z expan-
sion in Eq. (16). Since ā

1

is a physical observable, it can be
computed for any choice of t

0

6= t̄
0

.
12 Both cases have |z|Na+1

max

⇡ 0.02 in the range 0 < Q2 < 3GeV2.
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FIG. 2. Best fit curves and errors propagated from deuterium
to free-neutron cross section. Blue corresponds to dipole and
red to Na = 4 z expansion in Table IV.
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Results are consistent within errors. The very conserva-
tive bound |ak/a0|  10 would lead to an error that is
⇠ 50% larger than our default |ak/a0|  5.

3. Choice of t
0

Finally, consider the choice of t
0

.11 A di↵erent choice
of t

0

requires more parameters to achieve the same trun-
cation error, ⇠ |z|Na+1. We compare the default case of
t
0

= �0.28GeV2 and Na = 4 to the case of t
0

= 0 and
Na = 7,12 finding

[ā
1

(BNL), ā
1

(ANL), ā
1

(FNAL)]

=

(
[2.23(10), 2.24(10), 2.02(15)] (Na = 4, t

0

= t̄
0

)

[2.20(9), 2.20(10), 2.01(17)] (Na = 7, t
0

= 0)
,

(27)

11 For t
0

= toptimal

0

(1GeV2) = �0.28GeV2, by design, the shape
parameter is identified with the linear coe�cent of the z expan-
sion in Eq. (16). Since ā

1

is a physical observable, it can be
computed for any choice of t

0

6= t̄
0

.
12 Both cases have |z|Na+1

max

⇡ 0.02 in the range 0 < Q2 < 3GeV2.
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Dipole and z expansion yield different FA

6

shows that the form factor expressed as FA(z) becomes
approximately linear. Taking |z|

max

= 0.23 implies that
quadratic, cubic, and higher order terms enter at the level
of ⇠ 5%, 1%, 0.3%, etc. We investigate a range of k

max

in Eq.(16), and other choices of t
0

.
The asymptotic scaling prediction from perturbative

QCD [69], FA ⇠ Q�4, implies the series of four sum
rules [44]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(19)

We enforce the sum rules (19) on the coe�cients, ensur-
ing that the form factor falls smoothly to zero at large
Q2.

From (19), it can be shown [44] that the coe�cients
behave as ak ⇠ k�4 at large k. We remark that the dipole
ansatz (12) implies the coe�cient scaling law |ak| ⇠ k at
large k,10 in conflict with the scaling law |ak| ⇠ k�4 from
perturbative QCD.

B. Coe�cient bounds

An examination of explicit spectral functions and scat-
tering data motivates the bound of [62]

|ak/a0|  5. (20)

As noted above, from (19), the coe�cients behave as ak ⇠
k�4 at large k. We invoke a fall-o↵ of the coe�cients at
higher order in k,

|ak/a0|  25/k , k > 5. (21)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit. We also investigate alterna-
tives to Eqs. (20) and (21).

C. z expansion fits

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as in
Eq. (16). We enforce the sum rule constraints (19) and
use the default statistical priors (20),(21). The results
are summarized in Table IV and displayed in Figs. 1 and
2.

As discussed after Eq. (18), z2, z3, z4, etc., terms in the
z expansion become increasingly irrelevant, correspond-
ing to the numerical size of |z|

max

in Table III. This is

10 This result follows from an analysis similar to the representation
of a monopole by z expansion, cf. Ref. [19].
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

borne out by the data, which determines a form factor
that is approximately linear in the z variable. For the
Na = 4 fits in Table IV,
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FIG. 2. Best fit curves and errors propagated from deuterium
to free-neutron cross section. Blue corresponds to dipole and
red to Na = 4 z expansion in Table IV.
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Results are consistent within errors. The very conserva-
tive bound |ak/a0|  10 would lead to an error that is
⇠ 50% larger than our default |ak/a0|  5.

3. Choice of t
0

Finally, consider the choice of t
0

.11 A di↵erent choice
of t

0

requires more parameters to achieve the same trun-
cation error, ⇠ |z|Na+1. We compare the default case of
t
0

= �0.28GeV2 and Na = 4 to the case of t
0

= 0 and
Na = 7,12 finding

[ā
1

(BNL), ā
1

(ANL), ā
1

(FNAL)]

=

(
[2.23(10), 2.24(10), 2.02(15)] (Na = 4, t

0

= t̄
0

)

[2.20(9), 2.20(10), 2.01(17)] (Na = 7, t
0

= 0)
,

(27)

11 For t
0

= toptimal

0

(1GeV2) = �0.28GeV2, by design, the shape
parameter is identified with the linear coe�cent of the z expan-
sion in Eq. (16). Since ā

1

is a physical observable, it can be
computed for any choice of t

0

6= t̄
0

.
12 Both cases have |z|Na+1

max

⇡ 0.02 in the range 0 < Q2 < 3GeV2.

E⌫ = 10GeV

(recall floating normalization and self-
consistent flux: different FA can yield
similar dN/dQ2 in fit range)
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TABLE V. Same as Table IV, but fitting only to data with Q2  1GeV2.

dipole Na = 3 Na = 4 Na = 5

experiment �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] N
bins

BNL1981 24.3 1.16+0.08
�0.08 0.347+0.049

�0.046 26.8 1.17+0.14
�0.13 0.33+0.30

�0.31 26.6 1.17+0.14
�0.13 0.29+0.32

�0.33 26.3 1.16+0.14
�0.13 0.25+0.33

�0.34 16

ANL1982 27.3 1.14+0.07
�0.06 0.454+0.053

�0.051 30.8 1.14+0.10
�0.09 0.40+0.26

�0.27 29.6 1.14+0.10
�0.10 0.32+0.28

�0.29 28.4 1.13+0.11
�0.10 0.26+0.29

�0.30 19

FNAL1983 8.3 1.16+0.26
�0.17 0.33+0.12

�0.12 8.3 1.22+0.29
�0.23 0.54+0.44

�0.43 8.1 1.23+0.29
�0.24 0.55+0.44

�0.44 8.1 1.24+0.29
�0.24 0.56+0.44

�0.45 9

TABLE VI. Same as Table IV, but fitting only to data with Q2 � 0.2GeV2.

dipole Na = 3 Na = 4 Na = 5

experiment �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] �2LL N
fit

r2A [fm2] N
bins

BNL1981 60.6 1.24+0.21
�0.14 0.60+0.11

�0.14 62.3 1.27+0.19
�0.17 0.82+0.33

�0.34 61.5 1.26+0.21
�0.18 0.73+0.36

�0.37 60.8 1.24+0.22
�0.18 0.66+0.38

�0.39 47

ANL1982 43.3 1.40+0.25
�0.40 1.54+1.07

�0.52 45.8 1.31+0.21
�0.18 1.03+0.33

�0.33 45.8 1.31+0.23
�0.20 1.03+0.36

�0.37 45.7 1.32+0.25
�0.21 1.04+0.37

�0.39 46

FNAL1983 38.1 1.16+0.21
�0.16 0.32+0.06

�0.07 39.0 1.21+0.31
�0.25 0.63+0.44

�0.43 39.0 1.21+0.32
�0.25 0.62+0.46

�0.45 39.0 1.21+0.33
�0.26 0.60+0.49

�0.47 28

are
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1GeV
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>:

[2.23(15), -1.8(1.3), -1.0(2.8), 1.0(2.8)] (BNL)

[2.52(13), -3.7(1.2), 0.6(2.8), 1.6(2.8)] (ANL)

[1.81(32), -0.6(1.9), -0.4(3.0), -0.5(2.9)] (FNAL)
(30)

Several tensions appear in the comparison of fits em-
ploying di↵erent Q2 regions of the data, as summarized
in Tables IV, V, VI and VII, and in Eqs. (28), (29)
and (30). In particular, there is a ⇠ 1.9� tension be-
tween the shape parameter ā

1

for the BNL dataset ex-
cluding Q2 � 1GeV2 and the same dataset excluding
Q2  0.2GeV2. Similarly, there is a ⇠ 1.7� tension be-
tween ā

1

for ANL using the entire dataset versus the
restricted range 0.2GeV2  Q2  1GeV2.

There is also a large decrease in the minimum of
�2LL⇠ �2 when comparing Table V with Table VII for
BNL (��2

min

⇡ 7) and ANL (��2

min

⇡ 16) datasets (for
definiteness, comparing results at Na = 4 in each case).
This is surprising, since the datasets di↵er only by the
inclusion of 2 and 3 bins, respectively.

2. Residuals analysis

A nonstatistical distribution of points about the best-
fit curve is visually apparent in Fig. 1. A plot of data
compared to the best fit curve14 is displayed in Fig. 5.
The BNL distribution of data in Fig. 5 has �2

min

= 30 for

14 For definiteness best fit curve is from a simultaneous fit to the
BNL, ANL and FNAL datasets. A nearly identical plot is ob-
tained if best fit curves for each dataset are used.
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FIG. 5. Data divided by best fit prediction for the Q2 dis-
tributions displayed in Fig. 1, for BNL(red) ANL (blue), and
FNAL (green).

16 datapoints, and the ANL data has �2

min

= 32 for 19
datapoints.15

For later use, let us note the level of additional error
that is necessary to obtain a reduced �2 of unity. We
include an error for each datapoint proportional to the
number of events in the original dN/dQ2 distribution.
Adding this error in quadrature to the statistical error,
we see that for BNL, an additional 10% error is required,
while ANL requires an additional 7.5% error. The z ex-
pansion analysis implies that an axial form factor with

15 The lower statistics FNAL data has �2

min

= 8 for 9 datapoints.

�2
= 30 (16 points, BNL)

�2
= 32 (19 points, ANL)

Possible correlated effect between datasets, including deficit at small Q2

Revisit systematics: 

Data are in tension with any FA described by QCD

- experimental acceptance/efficiency correction
- theoretical deuteron correction
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total data sample from all exposures of the
chamber.

II. EXPERIMENTAL ARRANGEMENT

The 12.4-GeV/c proton beam was extracted
from the Zero Gradient Synchrotron and focused
onto a beryllium target. The positive hadrons pro-
duced in the p-Be collisions were focused toward
the bubble chamber by two magnetic horns. Neu-
trinos from the decay of the pions and kaons in
the 30-m-long drift space traversed the bubble
chamber. A shield in front of the bubble chamber
removed all particles except neutrinos.
The neutrino flux was calculated utilizing the

measured yields of pions in p-Be collisions and
propagating the particles through the horn system
and decay tunnel. We estimate the flux uncertain-
ty to be +15% except at the highest energies
where the lack of measurements of K+ production
leads us to assign a +25% uncertainty. The flux
peaks at -0.5 GeV/c and has fallen by an order
of magnitude at a neutrino energy of 2 GeV/c . A
detailed description of the experiment, including
the flux measurement, is given in our previous pub-
lication.
The film was scanned at each of the collaborat-

ing institutions and all one-, two-, and three-prong
events recorded. All of the film used for the
analysis of quasielastic scattering was double-
scanned and some was triple-scanned. The overall
scanning efficiency was (98+2)% for events
within a fiducial volume. The scanning efficiency
varied slightly with Q is shown in Fig. 1, and an
efficiency correction was made as a function of 400 I

[
I

this variable.
For part of the second run, thin tantalum plates

were used in the downstream end of the chamber.
We discarded all events originating within or
downstream of the plates since the boiling around
the plate supports degraded the visibility in this re-
gion.
To estimate the level of contamination in the

quasielastic channel, we studied the quantities
M =(Eq+Ep+Ep Mg)——( Pp+Pq+Pp ) and

a, the angle between the known neutrino beam
direction and the reconstructed visible momentum.
For neutrino events, both quantities should cluster
near zero. Scatter plots of the events in the M:a
space show such a clustering and give an estimat-
ed total background of (2+2) %.
The contamination from events of the channel

v&d ~IJ, n. pp, was estimated by taking events of
the reaction, v&d ~p m+pn„deleting the m+
track, and refitting to the v„d~p pp, hypothesis.
Monte Carlo simulations were also made. Both
methods yielded (1+1)% for the ir background.
All events of the two- and three-prong topolo-

gies were fitted to the vied jM pp, hypothesis.
Events satisfying this hypothesis were examined by
a physicist to verify consistency with such visual
information as ionization, decays, or scatters.
For two-prong events, the spectator momentum

is not measured, so in the fitting process we as-
signed 0+50 MeV/c to each Cartesian projection
of the spectator momentum. Figure 2 shows the
resulting distribution in spectator proton momen-
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c 09Q
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C

0.8—QV

P) 200-
C)

CI
100-

0
0 02 1.0

0.7
0 0.1

I

0.2
t

0.3 0.4
FIG. 1. Scanning efficiency as a function of momen-

tum transfer squared.

Spectator hhomentum (QeV/c)

FIG. 2. Spectator-proton momentum distribution.
Three-prong events are shown as cross-hatched. The
solid curve is the normalized Hulthen distribution.
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the bubble chamber data. For example, Fig. 1 of ANL
1982 [66] includes an estimate of the scanning e�ciency
ranging from e = 90±7% at 0.05GeV2 < Q2 < 0.1GeV2

to e = 98±1% for Q2 > 0.15GeV2. We include a possible
correlated e�ciency correction by comparing nominal fits
with a new fit obtained by the replacing the e�ciency-
corrected number of events,

dN

e(Q2)
! dN

e(Q2) + de(Q2)
=

dN

e(Q2)

✓
1 + ⌘e

de(Q2)

e(Q2)

◆
�1

.

(34)
Here ⌘e = 0 ± 1 is a parameter introduced in the fit,
and we use a simple linear interpolation of the function
in Ref. [66] for the e�ciency e(Q2) and e�ciency error
de(Q2).

In the BNL dataset, an e�ciency e↵ect with similar
magnitude is presented, but not directly in the Q2 vari-
able. For simplicity we take the ANL function to rep-
resent possible e↵ects in both BNL and FNAL datasets,
with independent floating scale parameters ⌘ = 0 ± 1 in
Eq. (34).

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (without)

[1.98(13), 26.9] (with)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (without)

[2.27(11), 28.1] (with)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25), 8.1] (without)

[1.87(25), 8.7] (with)
.

(35)

[rjh: How did -2LL get bigger after allowing for cor-
rection?] [rjh: Report preferred value of ⌘] In
each case there is only a small or modest improvement
in the fit quality, and small impact on the form factor
shape. Acceptance corrections within the quoted range
have only minor impact.

3. Nuclear corrections

We have so far not revisited the simple deuteron cor-
rection model of Singh [57] that was employed in the orig-
inal deuterium analyses to relate deuteron and neutron
cross sections, Eqs. (2) and (4). An example of a more
sophisticated potential model computation, albeit with-
out a quoted error, is provided for certain kinematics by
Shen et al. in Ref. [58].16 A comparison of the models is
displayed in Fig. 6, overlaid with the di↵erential cross sec-
tion computed for neutrino scattering on a free neutron.
In the model of Ref. [57], the deutron cross section is as-
sumed to approach the free-neutron result, with small or
negligible corrections above Q2 ⇡ 0.1GeV2. In contrast,

16 See also Ref. [21].
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The dashed (red) curve is the free-
neutron result. The bottom solid (red) curve is obtained from
the free-neutron result using the model from Ref. [57], as in
the original deuterium analyses. The top solid (black) curve is
extracted at E⌫ = 1GeV from Ref. [58]. The charged lepton
mass is neglected in this plot.

the model of Ref. [58] deviates from the free-neutron re-
sult, at the ⇠ 20% level, over a broad Q2 range. [rjh:
Further discussion of reconstruction e↵ects?] The
size of the e↵ect suggests that this is an avenue for fu-
ture work, even if there are no future deuterium mea-
surements.
Assuming an energy-independent deuteron correction

with Q2-dependence given by the Shen curve in place of
the Singh curve yields

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (Singh)

[2.15(14), 24.7] (Shen)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (Singh)

[2.45(13), 28.4] (Shen)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25),8.1] (Singh)

[1.99(25),9.0] (Shen)
.

(36)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, but there is little or no improve-
ment in fit quality.

D. Final systematic error budget

We have analyzed a range of sources for systematic
errors. Our self-consistent treatment of flux based on

- experimental acceptance/efficiency correction

allow for correlated variation: η=0 ± 1 

ANL, PRD 26, 537 (1982)

data prefer η≠0 (ANL: η=-1.9, BNL: η=-1), but no significant 
improvement in fit quality
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- theoretical deuteron correction
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2. Acceptance corrections

One source of uncertainty in the low-Q2 region is
the acceptance corrections associated with human eye-
scanning of the bubble chamber photographs, especially
in the limit of very-low Q2. For example, Fig. 1 of ANL
1982 [71] includes an estimate of the scanning e�ciency
ranging from e = 90±7% at 0.05GeV2 < Q2 < 0.1GeV2

to e = 98±1% for Q2 > 0.15GeV2. We include a possible
correlated e�ciency correction by comparing nominal fits
with a new fit obtained by the replacing the e�ciency-
corrected number of events,

dN

e(Q2)
! dN

e(Q2) + de(Q2)
=

dN

e(Q2)

✓
1 + ⌘e

de(Q2)

e(Q2)

◆
�1

.

(30)
Here ⌘e = 0 ± 1 is a parameter introduced in the fit,
and we use a simple linear interpolation of the function
in Ref. [71] for the e�ciency e(Q2) and e�ciency error
de(Q2).

In the BNL dataset, an e�ciency e↵ect with similar
magnitude is presented, but not directly in the Q2 vari-
able. For simplicity we take the ANL function to rep-
resent possible e↵ects in both BNL and FNAL datasets,
with independent floating scale parameters ⌘ = 0 ± 1 in
Eq. (30).

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (without)

[1.98(13), 26.9] (with)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (without)

[2.27(11), 28.1] (with)
,

FNAL : [ā
1

, �2LL] =

(
[1.87(25), 8.1] (without)

[1.87(25), 8.7] (with)
.

(31)

[rjh: How did -2LL get bigger after allowing for cor-
rection? And the uncertainty on a1 got smaller not
larger when this additional freedom was introduced.]
The parameter ⌘ takes on values of -1.9, -1.0, and +0.02
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to de-
crease the predicted cross section to match the data. In
each case there is only a small or modest improvement
in the fit quality, and small impact on the form factor
shape. Acceptance corrections within the quoted range
have only minor impact.

3. Deuteron corrections

The analysis to this point, like the experimenter’s origi-
nal analysis, used the deuteron correction model R(Q2) of
Singh [60]. This model provides a suppression of the cross
section for Q2 < 0.16 GeV2. A followup analysis [61]
presents additional results including meson exchange cur-
rent contributions and considers additional forms for the
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The dashed (red) curve is the free-
neutron result. The bottom solid (red) curve is obtained from
the free-neutron result using the model from Ref. [60], as in
the original deuterium analyses. The top solid (black) curve is
extracted at E⌫ = 1GeV from Ref. [62]. The charged lepton
mass is neglected in this plot.

deuteron wave function. These results are also limited
to a 1 GeV neutrino and Q2 < 0.16 GeV2; within these
bounds they suggest 5% to 15% e↵ects depending on the
configuration of the calculation.
An example of a modern calculation with extended

range in energy and Q2 is given by Ref. [62]. 8 This
model is overlaid with the original Singh model as well
as the free neutron model in Fig. 6. The newer model
deviates substantially from the free-neutron result at the
⇠ 20% level over a broad Q2 range. These models do not
constitute an estimate of the uncertainty on deuteron
corrections, and suggests an avenue for future work even
if there are no future measurements on deuterium.

Assuming an energy-independent deuteron correction
with Q2-dependence, the change in the fit results can be
compared. Because the Shen et al. curve is given only
for Q2 < 1.0, the fits are limited to the configuration of
Table. V and Eq. 27.

BNL : [ā
1

, �2LL] =

(
[1.99(15), 26.6] (Singh)

[2.15(14), 24.7] (Shen)
,

ANL : [ā
1

, �2LL] =

(
[2.28(14), 29.6] (Singh)

[2.45(13), 28.4] (Shen)
,

8 See also Ref. [21].

E⌫ = 1GeV

assumed in existing world averages: 
Singh, NPB 36, 419 (1972).

modern potential model: Shen, 
Marcucci, Carlson, Gandolfi, 
Schiavilla (1205.4337)

An open problem to quantify uncertainty, especially at larger 
energy



35

]2[GeV2Q
0 0.2 0.4 0.6 0.8 1

da
ta

 / 
fit

0

0.5

1

1.5

2

BNL
ANL
FNAL

In final determination :

- include correlated efficiency correction (for each dataset)

- include additional uncorrelated error to achieve 
Χ2/d.o.f.  = 1 ( δN/N ≈ 10% )

- joint fit to all data (ANL, BNL, FNAL)
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Deuterium constraints on FA

FA(q
2) =

X

k

ak[z(q
2)]k

Complete description: coefficients, errors and correlations

12

]2[GeV2Q
0 0.2 0.4 0.6 0.8 1

)
2

(Q
A

F

0

0.5

1

=4 z expansionaN

 = 1.014 world avgAm

FIG. 7. Form factor shape using set of defaults described
in the text compared to the world-best extraction using the
dipole form factor.

FNAL : [ā
1

, �2LL] =

(
[1.87(25),8.1] (Singh)

[1.99(25),9.0] (Shen)
.

(32)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three sets of data.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. The
available deuteron corrections do not themselves consi-
tute an uncertainty, and we use the alternate procedure
described in Sec. III B 1.

In our final analysis, we modify the original fits dis-
played in Table V. First, we allow a correlated accep-
tance correction as in Eq. (30). Second, we include a 10%
error added in quadrature to statistical error in each Q2

bin to account for residual deuteron or other systematic
corrections. With these corrections in place, we perform
a �2 fit to all data up to Q2 = 1GeV2. The neglect of
data above Q2 = 1GeV2 has only minor impact on the
fits, and allows a simple treatment of these combined un-
certainties with full covariance using a �2 fit. [Could use
one more bin that integrates from 1.0 to 3.0]

V. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from joint fits to
the three sets of data. We choose Na = 4 free parameters

with t
0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (18). The acceptance correction free parameter is
independent for each experiement in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are

(a
1

, a
2

, a
3

, a
4

) =

(2.29+0.13
�0.13,�0.6+1.0

�1.0,�3.7+2.5
�2.6, 2.2

+2.7
�2.7) . (33)

The diagonal entries of the covariance matrix are

C
diag

= (0.0155, 1.09, 6.57, 7.41) , (34)

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.351 �0.679 0.611

0.351 1 �0.898 0.369

�0.679 �0.898 1 �0.686

0.611 0.369 �0.686 1

1

CCCA
. (35)

This description can be systematically improved when
and if further data or externally constrained deuterium
models becomes available.
We also provide an alternate determination of the ax-

ial form factor. We again choose Na = 4 free parame-
ters with t

0

= toptimal

0

(1GeV2), but instead perform a
joint log-likelihood fit of all data with Q2  3GeV2.
Systematic parameters for correcting the acceptance are
again included, but the nuclear correction systematic is
neglected. To use these smaller uncertainties require an
additional evaluation of the deuterium correction uncer-
tainty.
Central values and 1� errors determined from

�(�2LL) = 1 are

(a
1

, a
2

, a
3

, a
4

) =

(2.27+0.08
�0.08, 0.20

+0.97
�0.95,�5.0+2.3

�2.3, 2.5
+2.7
�2.7) . (36)

The diagonal entries of the covariance matrix are

C
diag

= (0.00637, 0.784, 4.51, 6.88) , (37)

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.324 �0.679 0.762

0.324 1 �0.889 0.314

�0.679 �0.889 1 �0.690

0.762 0.314 �0.690 1

1

CCCA
. (38)

VI. APPLICATIONS AND DISCUSSION

This axial form factor can be used to compute several
derived observables that depend on this function. We
consider several applications of these results and compare
to other approaches.
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FIG. 7. Form factor shape using set of defaults described
in the text compared to the world-best extraction using the
dipole form factor.

FNAL : [ā
1

, �2LL] =

(
[1.87(25),8.1] (Singh)

[1.99(25),9.0] (Shen)
.

(32)

The extracted form factor shifts to mimic the di↵erence
in the curves in Fig. 6, and there is slight improvement
in fit quality for two of the three sets of data.

D. Final systematic error budget

The most important systematic uncertainties are the
two that significantly modify the Q2 distribution: ac-
ceptance corrections and the deuteron correction. The
available deuteron corrections do not themselves consi-
tute an uncertainty, and we use the alternate procedure
described in Sec. III B 1.

In our final analysis, we modify the original fits dis-
played in Table V. First, we allow a correlated accep-
tance correction as in Eq. (30). Second, we include a 10%
error added in quadrature to statistical error in each Q2

bin to account for residual deuteron or other systematic
corrections. With these corrections in place, we perform
a �2 fit to all data up to Q2 = 1GeV2. The neglect of
data above Q2 = 1GeV2 has only minor impact on the
fits, and allows a simple treatment of these combined un-
certainties with full covariance using a �2 fit. [Could use
one more bin that integrates from 1.0 to 3.0]

V. AXIAL FORM FACTOR EXTRACTION

The best axial form factor is extracted from joint fits to
the three sets of data. We choose Na = 4 free parameters

with t
0

= toptimal

0

(1GeV2) and data with Q2  1GeV2.
As discussed above, this corresponds to a k

max

= 8 z
expansion, where five linear combinations of coe�cients
are fixed by the Q2 = 0 constraint and by the four sum
rules (18). The acceptance correction free parameter is
independent for each experiement in the joint fit.
Our knowledge of the axial form factor resulting from

deuterium scattering data is summarized by constraints
on the coe�cients ak. Central values and 1� errors de-
termined from ��2 = 1 are

(a
1

, a
2

, a
3

, a
4

) =

(2.29+0.13
�0.13,�0.6+1.0

�1.0,�3.7+2.5
�2.6, 2.2

+2.7
�2.7) . (33)

The diagonal entries of the covariance matrix are

C
diag

= (0.0155, 1.09, 6.57, 7.41) , (34)

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.351 �0.679 0.611

0.351 1 �0.898 0.369

�0.679 �0.898 1 �0.686

0.611 0.369 �0.686 1

1

CCCA
. (35)

This description can be systematically improved when
and if further data or externally constrained deuterium
models becomes available.
We also provide an alternate determination of the ax-

ial form factor. We again choose Na = 4 free parame-
ters with t

0

= toptimal

0

(1GeV2), but instead perform a
joint log-likelihood fit of all data with Q2  3GeV2.
Systematic parameters for correcting the acceptance are
again included, but the nuclear correction systematic is
neglected. To use these smaller uncertainties require an
additional evaluation of the deuterium correction uncer-
tainty.
Central values and 1� errors determined from

�(�2LL) = 1 are

(a
1

, a
2

, a
3

, a
4

) =

(2.27+0.08
�0.08, 0.20

+0.97
�0.95,�5.0+2.3

�2.3, 2.5
+2.7
�2.7) . (36)

The diagonal entries of the covariance matrix are

C
diag

= (0.00637, 0.784, 4.51, 6.88) , (37)

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.324 �0.679 0.762

0.324 1 �0.889 0.314

�0.679 �0.889 1 �0.690

0.762 0.314 �0.690 1

1

CCCA
. (38)

VI. APPLICATIONS AND DISCUSSION

This axial form factor can be used to compute several
derived observables that depend on this function. We
consider several applications of these results and compare
to other approaches.
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Derived observables:  1) axial radius

6

higher order in k,

|ak/a0|  25/k , k > 5. (20)

The bounds are enforced with a Gaussian penalty on the
coe�cients entering the fit.

We investigate a range of k
max

, other choices of t
0

,
and alternatives to Eqs. (19) and (20), which are briefly
reported in Sec. IV.

B. z expansion basic fit results

Using the same datasets and constants as described
in Sec. II and summarized in Table I, we perform fits
replacing dipole axial form factor with z expansion as
in Eq. (15). We enforce the sum rule constraints (18)
and use the default bounds on the coe�cients ak in
Eqs. (19),(20). The results are summarized in Table IV
and displayed in Figs. 1 and 2. For the Na = 4 fits in
Table IV,

[a
1

, a
2

, a
3

, a
4

]

=

8
><

>:

[2.23(10), 0.5(1.0), -5.3(2.5), 2.1(2.7)] (BNL)

[2.24(10), 0.1(0.9), -4.7(2.3), 2.6(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

,

(21)

where (symmetrized) errors correspond to a change of 1.0
in the -2LL function.

For Na = 4, the shape parameter (24) is determined by
the di↵erent datasets as displayed in Eq. (21). The fits
summarized in Table IV also include variations with dif-
ferent number of free parameters. To summarize briefly,
the leading coe�cient almost does not change as more
parameters are added. This is summarized [TODO clean
the bara notation, which is introduced later.]

[a
1

(BNL), a
1

(ANL), a
1

(FNAL)]

=

8
><

>:

[2.22(10), 2.22(10), 2.02(14) ] , Na = 3

[2.23(10), 2.24(10), 2.02(14) ] , Na = 4

[2.21(10), 2.24(10), 2.01(14) ] , Na = 5

. (22)

As discussed after Eq. (17), z2, z3, z4, etc., terms in the z
expansion become increasingly irrelevant, corresponding
to |z|

max

⌧ 1.0 in Table III. This is borne out by the
data, which determines a form factor with coe�cients of
order 1.0 that mostly don’t push the Gaussian bounds,
and the leading coe�cient is approximately the same re-
gardless of how many orders in z are used.

In addition to the full form factor, the axial “charge”
radius can be defined via the form factor slope at q2 = 0,

1

FA(0)

dFA

dq2

����
q2=0

⌘ 1

6
r2A . (23)
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FIG. 1. Experimental data and best fit curves corresponding
to dipole and Na = 4 z expansion in Table IV.

This quantity is sensitive to all the coe�cients in the
expansion, and Table IV illustrates that it is poorly con-
strained, except the case with the restrictive dipole as-
sumption. We will provide a final value for the axial

13

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.57+0.32
�0.34 0.52+0.34

�0.35 0.48+0.36
�0.37

ANL 1982 0.69+0.30
�0.31 0.63+0.31

�0.32 0.58+0.33
�0.34

FNAL 1983 0.63+0.50
�0.47 0.63+0.49

�0.47 0.64+0.49
�0.47

Joint Fit 0.54+0.28
�0.29 0.47+0.30

�0.31 0.40+0.31
�0.32

A. Axial radius

We begin with the axial radius, defined in Eq. (23).
The form factor coe�cients and error matrix from Sec. V
determine the radius as

r2A = 0.47(31) fm2 . (39)

[asm: No deuterium correction Q2 < 3.0 gives
0.31(29)] The results from individual experiments are
consistent with the joint fit. Note, the joint fit is not
simply the average of the individual fits, a situation that
can arise from the interplay between the Gaussian sum
rule constraints on a single data set or on the statistically
more powerful combined data. [rik: Aaron, check this]
.

Because the axial radius is defined in the limit q2 ! 0,
it is a quantity from neutrino scattering that can be com-
pared to results from pion electroproduction. Extraction
of the radius in the latter case also depends heavily on
the dipole assumption [66]. Improvement in the determi-
nation of the muon capture rate in muonic hydrogen [58]
could provide complementary information on rA. In the
present analysis, the constraint is much looser than would
be inferred from results based on the dipole form. When
using z expansion, rA is especially sensitive to the fit
values of the higher order parameters and their uncer-
tainties, and therefore the quality of the data constraint
at low values of Q2.

Lattice QCD holds promise to determine the axial form
factor over much of the relevant Q2 range. Past attempts
to calculate the axial form factor at Q2 = 0 have been
challenging, for reasons which are the subject of some
controversy [76–78]. Recent advancements in comput-
ing have made a high-statistics calculation of the form
factor with complete control over lattice systematics fea-
sible, including four flavors of dynamical quarks, large
lattice sizes, and physical pion masses [79]. Such an ab-
initio calculation is entirely free from nuclear corrections.
[Aaron is advancing this for his thesis, which required a
proposal for computing time. Is that proposal citeable?]
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FIG. 8. Free nucleon CCQE cross section, employing the axial
form factor constrained by neutrino-deuteron scattering. The
neutrino-neutron case (top) and the antineutrino-proton case
(bottom) are shown with the result from this work and its
error band (lower line with vertical hatching) and the previous
world average (upper line with the smaller error band).

B. Neutrino-nucleon quasielastic cross sections

Consider now the total charged-current quasielastic
cross section �(E⌫) for neutrino (antineutrino) scatter-
ing on an isolated neutron (proton).
Current and future neutrino oscillation experiments

will precisely measure neutrino mixing parameters and
di↵erences in the squares of masses, determine the neu-
trino mass hierarchy, and search for possible CP viola-
tion. To achieve the precision measurement with the os-
cillated spectra, they will rely on accurate predictions or
constraints on the neutrino interaction cross sections.
The best fit cross section, and especially in the esti-

- order of magnitude larger uncertainty compared to dipole fits

- impacts comparison to other data, e.g. pion electroproduction, muon 
capture

PRELIMINARY



38

13

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.57+0.32
�0.34 0.52+0.34

�0.35 0.48+0.36
�0.37

ANL 1982 0.69+0.30
�0.31 0.63+0.31

�0.32 0.58+0.33
�0.34

FNAL 1983 0.63+0.50
�0.47 0.63+0.49

�0.47 0.64+0.49
�0.47

Joint Fit 0.54+0.28
�0.29 0.47+0.30

�0.31 0.40+0.31
�0.32

A. Axial radius

We begin with the axial radius, defined in Eq. (23).
The form factor coe�cients and error matrix from Sec. V
determine the radius as

r2A = 0.47(31) fm2 . (39)

[asm: No deuterium correction Q2 < 3.0 gives
0.31(29)] The results from individual experiments are
consistent with the joint fit. Note, the joint fit is not
simply the average of the individual fits, a situation that
can arise from the interplay between the Gaussian sum
rule constraints on a single data set or on the statistically
more powerful combined data. [rik: Aaron, check this]
.

Because the axial radius is defined in the limit q2 ! 0,
it is a quantity from neutrino scattering that can be com-
pared to results from pion electroproduction. Extraction
of the radius in the latter case also depends heavily on
the dipole assumption [66]. Improvement in the determi-
nation of the muon capture rate in muonic hydrogen [58]
could provide complementary information on rA. In the
present analysis, the constraint is much looser than would
be inferred from results based on the dipole form. When
using z expansion, rA is especially sensitive to the fit
values of the higher order parameters and their uncer-
tainties, and therefore the quality of the data constraint
at low values of Q2.

Lattice QCD holds promise to determine the axial form
factor over much of the relevant Q2 range. Past attempts
to calculate the axial form factor at Q2 = 0 have been
challenging, for reasons which are the subject of some
controversy [76–78]. Recent advancements in comput-
ing have made a high-statistics calculation of the form
factor with complete control over lattice systematics fea-
sible, including four flavors of dynamical quarks, large
lattice sizes, and physical pion masses [79]. Such an ab-
initio calculation is entirely free from nuclear corrections.
[Aaron is advancing this for his thesis, which required a
proposal for computing time. Is that proposal citeable?]
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FIG. 8. Free nucleon CCQE cross section, employing the axial
form factor constrained by neutrino-deuteron scattering. The
neutrino-neutron case (top) and the antineutrino-proton case
(bottom) are shown with the result from this work and its
error band (lower line with vertical hatching) and the previous
world average (upper line with the smaller error band).

B. Neutrino-nucleon quasielastic cross sections

Consider now the total charged-current quasielastic
cross section �(E⌫) for neutrino (antineutrino) scatter-
ing on an isolated neutron (proton).
Current and future neutrino oscillation experiments

will precisely measure neutrino mixing parameters and
di↵erences in the squares of masses, determine the neu-
trino mass hierarchy, and search for possible CP viola-
tion. To achieve the precision measurement with the os-
cillated spectra, they will rely on accurate predictions or
constraints on the neutrino interaction cross sections.
The best fit cross section, and especially in the esti-
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TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the datasets.

dataset r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.57+0.32
�0.34 0.52+0.34

�0.35 0.48+0.36
�0.37

ANL 1982 0.69+0.30
�0.31 0.63+0.31

�0.32 0.58+0.33
�0.34

FNAL 1983 0.63+0.50
�0.47 0.63+0.49

�0.47 0.64+0.49
�0.47

Joint Fit 0.54+0.28
�0.29 0.47+0.30

�0.31 0.40+0.31
�0.32

A. Axial radius

We begin with the axial radius, defined in Eq. (23).
The form factor coe�cients and error matrix from Sec. V
determine the radius as

r2A = 0.47(31) fm2 . (39)

[asm: No deuterium correction Q2 < 3.0 gives
0.31(29)] The results from individual experiments are
consistent with the joint fit. Note, the joint fit is not
simply the average of the individual fits, a situation that
can arise from the interplay between the Gaussian sum
rule constraints on a single data set or on the statistically
more powerful combined data. [rik: Aaron, check this]
.

Because the axial radius is defined in the limit q2 ! 0,
it is a quantity from neutrino scattering that can be com-
pared to results from pion electroproduction. Extraction
of the radius in the latter case also depends heavily on
the dipole assumption [66]. Improvement in the determi-
nation of the muon capture rate in muonic hydrogen [58]
could provide complementary information on rA. In the
present analysis, the constraint is much looser than would
be inferred from results based on the dipole form. When
using z expansion, rA is especially sensitive to the fit
values of the higher order parameters and their uncer-
tainties, and therefore the quality of the data constraint
at low values of Q2.

Lattice QCD holds promise to determine the axial form
factor over much of the relevant Q2 range. Past attempts
to calculate the axial form factor at Q2 = 0 have been
challenging, for reasons which are the subject of some
controversy [76–78]. Recent advancements in comput-
ing have made a high-statistics calculation of the form
factor with complete control over lattice systematics fea-
sible, including four flavors of dynamical quarks, large
lattice sizes, and physical pion masses [79]. Such an ab-
initio calculation is entirely free from nuclear corrections.
[Aaron is advancing this for his thesis, which required a
proposal for computing time. Is that proposal citeable?]
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FIG. 8. Free nucleon CCQE cross section, employing the axial
form factor constrained by neutrino-deuteron scattering. The
neutrino-neutron case (top) and the antineutrino-proton case
(bottom) are shown with the result from this work and its
error band (lower line with vertical hatching) and the previous
world average (upper line with the smaller error band).

B. Neutrino-nucleon quasielastic cross sections

Consider now the total charged-current quasielastic
cross section �(E⌫) for neutrino (antineutrino) scatter-
ing on an isolated neutron (proton).
Current and future neutrino oscillation experiments

will precisely measure neutrino mixing parameters and
di↵erences in the squares of masses, determine the neu-
trino mass hierarchy, and search for possible CP viola-
tion. To achieve the precision measurement with the os-
cillated spectra, they will rely on accurate predictions or
constraints on the neutrino interaction cross sections.
The best fit cross section, and especially in the esti-

Derived observables:  2) neutrino-nucleon quasi elastic cross sections
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Rigorous nucleon-level inputs (with error bars!) 
provide foundation for neutrino-nucleus predictions

- ab initio calculations/models

- clever event selections

- new experimental handles
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A. Meyer

- ab intio calculations/models

Fit to MINERvA carbon data

z expansion constrained by deuterium

“world average dipole”

[Minerva PRL 111, 022502 (2013)]

New module for z 
expansion and reweighting 
in GENIE event generator

⟹ Robust constraints on nuclear parameters (cf. parton 
distribution function determination at colliders)

⟹ Robust errors propagated to oscillation observables

 PRELIMINARY

with 2015 updated flux
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Can we constrain a simple nuclear model for two-body contributions ?

4

Q2
QE (GeV2) I II III IV V VI Total

0.0 � 0.025 0.06 0.04 0.02 0.04 0.09 0.03 0.13

0.025 � 0.05 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.05 � 0.1 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.1 � 0.2 0.06 0.03 0.03 0.02 0.09 0.02 0.11

0.2 � 0.4 0.05 0.02 0.03 0.03 0.09 0.01 0.11

0.4 � 0.8 0.05 0.03 0.04 0.04 0.09 0.01 0.13

0.8 � 1.2 0.08 0.07 0.07 0.15 0.09 0.02 0.22

1.2 � 2.0 0.12 0.07 0.07 0.16 0.09 0.02 0.24

TABLE I: Fractional systematic uncertainties on d�/dQ2
QE

associated with (I) muon reconstruction, (II) recoil recon-
struction, (III) neutrino interaction models, (IV) final state
interactions, (V) flux and (VI) other sources. The rightmost
column shows the total fractional systematic uncertainty due
to all sources.

Q2
QE Cross-section Fraction of

(GeV2) (10�38cm2/GeV2/neutron) Cross-section (%)

0.0 � 0.025 0.761 ± 0.035 ± 0.097 2.15 ± 0.10 ± 0.17

0.025 � 0.05 1.146 ± 0.047 ± 0.137 3.24 ± 0.13 ± 0.22

0.05 � 0.1 1.343 ± 0.034 ± 0.156 7.60 ± 0.19 ± 0.50

0.1 � 0.2 1.490 ± 0.028 ± 0.170 16.85 ± 0.32 ± 1.04

0.2 � 0.4 1.063 ± 0.019 ± 0.120 24.06 ± 0.43 ± 1.06

0.4 � 0.8 0.582 ± 0.013 ± 0.074 26.33 ± 0.58 ± 0.85

0.8 � 1.2 0.242 ± 0.014 ± 0.053 10.95 ± 0.64 ± 1.45

1.2 � 2.0 0.097 ± 0.008 ± 0.024 8.81 ± 0.71 ± 1.43

TABLE II: Flux-averaged di↵erential cross-sections and the
fraction of the cross-section in bins of Q2

QE . In each measure-
ment, the first error is statistical and the second is systematic.

strained by test beam measurements [38]), the Birk’s law
constant discussed above, and GENIE’s final state in-
teractions model. The latter is evaluated by varying the
underlying model tuning parameters within their system-
atic uncertainties.

The measured di↵erential cross-section d�/dQ

2
QE is

shown in Table II and Fig. 3. Integrating over the flux
from 1.5 to 10 GeV, we find3 � = 0.93 ± 0.01(stat) ±
0.11(syst)⇥10�38 cm2

/neutron. Figures 3 and 4 and Ta-
ble III compare the data to the RFG model in the GENIE
event generator and a set of calculations made with the
NuWro generator [19].

Di↵erent models of nuclear e↵ects in quasi-elastic scat-
tering lead to significant variations in the shape of
d�/dQ

2 from the expectation of the RFG model. In
particular, correlations between nucleons not considered
in the mean field RFG approach are predicted to con-
tribute to the cross-section at neutrino energies below
2 GeV [28–30]. Figure 4 compares the shape of the mea-
sured cross section to five di↵erent models of the quasi-
elastic process on carbon. The GENIE prediction, based
on a RFG nuclear model and dipole axial form factor
with MA = 0.99 GeV, is taken as a reference; the data
and other models are normalized to have the same to-
tal cross section across the range shown before forming
the ratio. The NuWro calculations utilize an axial-vector
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FIG. 3: Neutrino quasi-elastic cross-section as a function of
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FIG. 4: Ratio between the measured neutrino d�/dQ2
QE

shape in Q2
QE and several di↵erent models, where the denom-

inator is the GENIE default quasi-elastic cross-section.

form factor parameterized with a dipole form that has
one free parameter, the axial mass MA, and also in-
corporate di↵erent corrections for the nuclear medium.
There is little sensitivity to replacement of the Fermi gas
with a spectral function (SF) model of the target nucleon
energy-momentum relationship [31]. The neutrino data
are marginally more compatible, at least in Q

2
QE shape,

with a higher axial mass extracted from fits of the Mini-
BooNE neutrino quasi-elastic data in the RFG model
(MA = 1.35GeV/c2) [22] than with that extracted from
deuterium data (MA = 0.99GeV/c2). As with the cor-
responding antineutrino results [35], our data are in best
agreement with a transverse enhancement model (TEM)
with MA = 0.99GeV/c2. This model implements an en-
hancement of the magnetic form factors of bound nucle-
ons that has been extracted from electron-carbon scat-
tering data [27], and is the only one of this type that is
applicable at neutrino energies above 2 GeV. Table III
shows a comparison using �

2 values between the mea-

+
FA = dipole model

[ mA=1.01(2) ]
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Q2
QE (GeV2) I II III IV V VI Total

0.0 � 0.025 0.06 0.04 0.02 0.04 0.09 0.03 0.13

0.025 � 0.05 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.05 � 0.1 0.06 0.03 0.02 0.03 0.09 0.02 0.12

0.1 � 0.2 0.06 0.03 0.03 0.02 0.09 0.02 0.11

0.2 � 0.4 0.05 0.02 0.03 0.03 0.09 0.01 0.11

0.4 � 0.8 0.05 0.03 0.04 0.04 0.09 0.01 0.13

0.8 � 1.2 0.08 0.07 0.07 0.15 0.09 0.02 0.22

1.2 � 2.0 0.12 0.07 0.07 0.16 0.09 0.02 0.24

TABLE I: Fractional systematic uncertainties on d�/dQ2
QE

associated with (I) muon reconstruction, (II) recoil recon-
struction, (III) neutrino interaction models, (IV) final state
interactions, (V) flux and (VI) other sources. The rightmost
column shows the total fractional systematic uncertainty due
to all sources.

Q2
QE Cross-section Fraction of

(GeV2) (10�38cm2/GeV2/neutron) Cross-section (%)

0.0 � 0.025 0.761 ± 0.035 ± 0.097 2.15 ± 0.10 ± 0.17

0.025 � 0.05 1.146 ± 0.047 ± 0.137 3.24 ± 0.13 ± 0.22

0.05 � 0.1 1.343 ± 0.034 ± 0.156 7.60 ± 0.19 ± 0.50

0.1 � 0.2 1.490 ± 0.028 ± 0.170 16.85 ± 0.32 ± 1.04

0.2 � 0.4 1.063 ± 0.019 ± 0.120 24.06 ± 0.43 ± 1.06

0.4 � 0.8 0.582 ± 0.013 ± 0.074 26.33 ± 0.58 ± 0.85

0.8 � 1.2 0.242 ± 0.014 ± 0.053 10.95 ± 0.64 ± 1.45

1.2 � 2.0 0.097 ± 0.008 ± 0.024 8.81 ± 0.71 ± 1.43

TABLE II: Flux-averaged di↵erential cross-sections and the
fraction of the cross-section in bins of Q2

QE . In each measure-
ment, the first error is statistical and the second is systematic.

strained by test beam measurements [38]), the Birk’s law
constant discussed above, and GENIE’s final state in-
teractions model. The latter is evaluated by varying the
underlying model tuning parameters within their system-
atic uncertainties.

The measured di↵erential cross-section d�/dQ

2
QE is

shown in Table II and Fig. 3. Integrating over the flux
from 1.5 to 10 GeV, we find3 � = 0.93 ± 0.01(stat) ±
0.11(syst)⇥10�38 cm2

/neutron. Figures 3 and 4 and Ta-
ble III compare the data to the RFG model in the GENIE
event generator and a set of calculations made with the
NuWro generator [19].

Di↵erent models of nuclear e↵ects in quasi-elastic scat-
tering lead to significant variations in the shape of
d�/dQ

2 from the expectation of the RFG model. In
particular, correlations between nucleons not considered
in the mean field RFG approach are predicted to con-
tribute to the cross-section at neutrino energies below
2 GeV [28–30]. Figure 4 compares the shape of the mea-
sured cross section to five di↵erent models of the quasi-
elastic process on carbon. The GENIE prediction, based
on a RFG nuclear model and dipole axial form factor
with MA = 0.99 GeV, is taken as a reference; the data
and other models are normalized to have the same to-
tal cross section across the range shown before forming
the ratio. The NuWro calculations utilize an axial-vector
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form factor parameterized with a dipole form that has
one free parameter, the axial mass MA, and also in-
corporate di↵erent corrections for the nuclear medium.
There is little sensitivity to replacement of the Fermi gas
with a spectral function (SF) model of the target nucleon
energy-momentum relationship [31]. The neutrino data
are marginally more compatible, at least in Q

2
QE shape,

with a higher axial mass extracted from fits of the Mini-
BooNE neutrino quasi-elastic data in the RFG model
(MA = 1.35GeV/c2) [22] than with that extracted from
deuterium data (MA = 0.99GeV/c2). As with the cor-
responding antineutrino results [35], our data are in best
agreement with a transverse enhancement model (TEM)
with MA = 0.99GeV/c2. This model implements an en-
hancement of the magnetic form factors of bound nucle-
ons that has been extracted from electron-carbon scat-
tering data [27], and is the only one of this type that is
applicable at neutrino energies above 2 GeV. Table III
shows a comparison using �

2 values between the mea-
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Minerva

Minerva

� = �
1�body

+ f�
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critical to account for nucleon-level errors

(GENIE MEC model)

- ab intio calculations/models
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Capitalize on new detector technologies

C. Blanco, M. Wetstein, RJH
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Figure 1: TOP: The overal shape of the reconstructed energy distribution from a 1 GeV

monoenergetic neutrino beam for a sample with only a single lepton and no final state pions,

derived from muon kinematics assuming elasticity. TOP: Shape of the energy distribution

for the inclusive sample (solid black line) with contributions inelastic single-nucleon scatters

shown in the smaller red region and with the addition of MEC interactions, shown in the

larger purple region. LOWER: The same distributions for the sample selected with no final

state neutrons (left) and sample selected with one or more final state neutrons (right).
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- final state protons in LArTPC

≥1 neutron

cf. colliders:    define event classes to isolate underlying parton 
mechanisms (vector boson fusion, gluon fusion,…)

for neutrinos:   define event classes with (in)sensitivity to underlying 
nucleon-level mechanisms (multinucleon processes,…)

- final state neutrons (ANNIE)

0 neutron

(GENIE, +30% MEC)

1 GeV neutrino events, 
0 pions, reconstructed 

as quasielastic

- simple flux (stored muons); multiple fluxes (“nuPRISM”), … 

- clever event selections/new experimental handles
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g-2 delivery ring

Calibrate nuclear physics in known flux? (stored muon neutrino beam)

M. Popovic

w/ M. Pospelov

Also strong motivations for new elementary target experiments
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g-2

Mu2e

g-2 delivery ring

ν detector?

parity-violating μ-N scattering?

Calibrate nuclear physics in known flux? (stored muon neutrino beam)

M. Popovic

w/ M. Pospelov

Also strong motivations for new elementary target experiments



45

ν

Perturbative QFT

Nuclear physics

Lattice QCD

Event generation and 
detector modeling

Precision hadron
physics



46

Lattice QCD can constrain nucleon-level amplitudes from first principles

A prime target is the nucleon axial form factor

n p

e-νe

Need lighter quarks, bigger and finer lattices

N

f

= 2+1 Nucleon and Pion Form Factors
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Figure 4: (upper left) Nucleon isovector axial form factors using 3 pion masses at 875, 580 and 450 MeV.
The lowest gray band is the extrapolation to the physical pion mass. The dashed line is a dipole form using
M

A

= 1.03(2) GeV extending beyond the Q

2 region of the available experimental data. g

A

(upper right) and

M

N

q
r

2
A

(lower left) obtained from the same ensembles, and comparisons with previous N

f

= 2+1 results.
(lower right) Polarized distribution in a longitudinally polarized neutron.

factors G

n

E

only known to 1.5 GeV2; thus a majority of the form-factor inputs are based on extrap-
olation to larger Q

2 region. Note that the asymmetry in the distribution for a polarized nucleon
is due to the relativistic effect of boosting the magnetic moment of the baryon. This induces an
electric dipole moment that shifts the charge distribution.

2.2 Nucleon Axial Form Factors

A similar approach can be applied to nucleon axial form factors, where experiments mostly de-
rive results from neutron beta decay or pion form factors where various theoretical models predict
a wide range of possibilities for the large-Q2 region. The upper-left graph of Fig. 4 shows the pre-
liminary results for the isovector axial form factors using ensembles with 3 different pion masses.
The data are simultaneously extrapolated in pion mass and Q

2 (as were the EM form factors). The
lowest gray band is the result at physical pion mass, and the dashed line is the dipole form with best
fit to the experimental data (M

A

= 1.026(21) GeV [26]).1 The nucleon axial coupling constants are

1The M

A

value used here is obtained from a weighted average of M

A

from (quasi)elastic neutrino and antineutrino
scattering experiments only. Ref. [26] also analyzed weighted values from charged pion electroproduction experiments

8

Lattice QCD is poised to compete with deuterium data.

�(⌫n ! ep) = | · · ·FA(q
2) · · · |2

dFA

dq2

����
q2=0

/ r2A

(unphysical) pion mass

compilation from 
Lin and Cohen 1104.4319

illustrative: 
dipole mA=1.0(1) 

deuterium
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3

5. The analyticity method proposed here is interesting. What are potential pitfalls when applied in finite volume and with
non-zero lattice spacing?

As in B physics, we intend to apply the z expansion to a continuum-limit fit of the lattice data. Note that HPQCD has used
a “modified z expansion” combining the z expansion with the continuum extrapolation. Their results are consistent with
our two-step approach in, e.g., the B ! Kll rare semileptonic decay.

Because the spectrum is discrete in a finite volume, the cut in the q2 plane becomes a (dense) series of poles. Even so, the
non-analyticity remains on the real axis for q2 � 4M2

p . The salient feature of the conformal mapping from z to q2 is that it
maps the non-analytic region onto the unit circle, and the rest of the real axis on the line segment |z|< 1. These properties
are not altered if one has a series of poles instead of a cut.

6. The other known, large, systematic error in nucleon structure calculations is excited state contamination. It is reasonable
to expect (much) larger effects with staggered fermions due to extra flavor degrees of freedom. How will your study address
this? What are your source-operator-sink separations (in physical units)?

A striking feature of staggered-fermion correlators is the presence of a tower of opposite-parity states with oscillating time
dependence (�1)1+t/ae�m0

nt instead of the e�mnt behavior of the usual tower of radial excitations. These oscillating states
are not a big problem, in practice, because a fitter can easily distinguish a zig-zag from a smooth function.

In addition, the operators we propose to use to compute FA(q2) couple to D baryons as well as nucleons. We plan to
separate these contributions with a variational analysis of the proposed 4⇥4 matrix correlator. We have experience with
the variation analyses, in the presence of oscillating states, from the Ds spectrum, computed with clover charm and HISQ
strange quarks [21].

If needed, we can also compute a two-point correlation function that contains a D of a different taste but no nucleon.
Because the taste splittings with HISQ are small, this correlator can be used to set a prior for the mass of the lowest-lying
D in our correlators.

Finally, because the HISQ inverters are fast and the boxes are big, it is feasible to increase statistics, where needed, to
obtain very precise correlators. Sufficient precision at the outset will enable the rest of the analysis, in particular controlling
excited states.

FIG. 2. Summary of gA calculations worldwide in the L-Mp L plane.

The Nucleon Axial-Vector Form Factor at the Physical Point
with the HISQ Ensembles

A. Bazavov, C. Bernard, N. Brown, C. DeTar, Daping Du, A. X. El-Khadra, E. D. Freeland,
E. Gámiz, Steven Gottlieb, U. M. Heller, R. J. Hill, J. Komijani, A. S. Kronfeld,⇤ J. Laiho,

Ruizi Li, P. B. Mackenzie, D. Mohler, A. S. Meyer,† C. Monahan, E. T. Neil, Heechang Na,
J. Osborn, T. Primer, J. Simone, R. Sugar, D. Toussaint, R. S. Van de Water, and Ran Zhou

(Fermilab Lattice and MILC Collaborations)
(Dated: April 24, 2015)

RESPONSES TO SPC QUESTIONS

1. The dominant systematic in gA lattice calculations is likely not discretization errors. Is there a strong motivation for
staggered calculations given the many large scale studies with different lattice fermions already available both in the US
and around the world?
The principal motivation for a HISQ-on-HISQ calculation is to circumvent the chiral extrapolation. As shown in Fig. 1,
all other calculations (of which we are aware) have at most one ensemble with physical sea and physical valence masses.
We propose to use three lattice spacings at the physical point, so we can check how large the discretization effects are.
Two projects from the LHP Collaboration reach the physical point. One of these uses BMW configurations but at only
one lattice spacing. The other uses, in the most part, RBC/UKQCD configurations with Mp � 300 MeV, a ⇡ 0.06 fm,
supplemented by 20 configurations of a physical-point, a ⇡ 0.11 fm ensemble.

FIG. 1. Summary of gA calculations worldwide in the M2
p -a plane, showing only those with n f = 2+1 [1–8] and 2+1+1 sea quarks [9–12].

With HISQ the tastes of staggered pions have small splitting. Parameters for the BMW ensembles are taken from Ref. [13].

⇤ ask@fnal.gov
† asmeyer2012@uchicago.edu

A. Meyer,  A. Kronfeld, RJH, Fermilab lattice and MILC collaborations

Big lattices, multiple spacings, physical quark masses

Other targets: neutral currents; resonance couplings and form 
factors; pion final states

Advantages: independent of detector-dependent radiative corrections and 
nuclear effects (and for lattice QCD: no underground safety hazard)

m⇡[MeV] L[fm]

a[
fm

]

m
⇡
L

Lattice Extent vs. Pion MassPion mass vs. lattice spacing
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
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= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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rithms to all orders in perturbation theory when there
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Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.

11

World e-p scattering dominated by 2010 
MAMI A1 dataset: 0 < Q2 < 1 GeV2 
( |z|<0.32 )

- Unexpected Q2 dependence of extracted radius, and potentially large 
radiative corrections 

- For both e-p and ν-N: large logarithms upset naive perturbation theory  
(especially important for νe/νμ ratios)

- Work in progress to implement complete radiative corrections

1σ

dFE

dq2
/ r2E

electric 
form factor
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trate the potential impact, let us consider in place of the
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As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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for the world cross section and polarization dataset. Fits use
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A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t
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with |ak|max

= |bk|max

/µp = 5, k
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.
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(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
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lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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New analysis: G. Lee, J. Arrington, RJH 1505.01489
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Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
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are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for
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- Unexpected Q2 dependence of extracted radius, and potentially large 
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- For both e-p and ν-N: large logarithms upset naive perturbation theory  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- Work in progress to implement complete radiative corrections
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given by Eq. (41) using �E = 10MeV. Lower and upper
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in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
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= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
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atic e↵ects in higher Q
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:

(1 + �) !

1 ±

✓
� +

↵

⇡

log2

Q

2

m

2

e

◆�±1

⇥ exp

✓
�↵

⇡

log2

Q

2

m

2

e

◆
. (41)

These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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MAMI A1 dataset: 0 < Q2 < 1 GeV2 
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- Unexpected Q2 dependence of extracted radius, and potentially large 
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- For both e-p and ν-N: large logarithms upset naive perturbation theory  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QCD in many regimes critical to extracting fundamental physics in the 
neutrino sector

ν

Perturbative 
QFT

Nuclear 
physics

Event generation and 
detector modeling

Precision 
hadron
physics

CP violation

mass hierarchy

sterile ν

proton decay

…

Lattice QCD

supernova ν
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Cross sections key to discoveries in the neutrino sector

Particle theory has a critical role to play     
- precision hadron physics: model-independent amplitudes, error bars

- radiative corrections: critical for control over νe/νμ ratios, error bars

- lattice QCD: completely different systematics vs. elementary targets, error bars

Important connections: other intensity frontier initiatives

- lattice QCD & baryons:  neutrinos, DM, proton radius puzzle, nEDM, …

- radiative corrections: neutrinos, g-2, proton radius puzzle, CKM, …

- interplay of nucleon amplitudes and nuclear effects: energy reconstruction 
in ν-N scattering; atmospheric bkgd. to proton decay, next generation WIMP 
searches, neutrinoless double beta decay, … 
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0.7 0.8 0.9 1

A1 analysis (spline fit)
z expansion

+ hadronic TPE
rebin, + 0.3% uncorr. syst.
+ 0.4% corr. syst.
Mainz final (Q2max=0.5 GeV2)

world data (Q2max=0.6 GeV2)

Mainz + world average

rMMainz = 0.777(34)(17)

rMworld = 0.913(37)
rMavg. = 0.847(27)simple average:

Proton magnetic radius

2.5σ

rM [fm]



Experimental landscape: hydrogen

Proton Puzzle         Mainz           June 3, 2014            Eric Hessels  York University  Toronto  Canada                12 

Comparing muonic hydrogen to the individual 
measurements makes the conflict seem not as big: 
all but one agree with µp to within 2 s.d.  

We need more measurements in hydrogen  

Hydrogen 

● no straightforward systematic explanation identified, but ~5σ deviation 
results from summing many ~2σ effects

plot courtesy E. Hessels, proton radius workshop 2014
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